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- Rapid EV Charging
- Future Bioreactor Concepts

- Topping Cycles for Power Generation
- Ubiquitous Methane Sensing
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Rapid EV Charging

Amul D. Tevar
ARPA-E Fellow
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Could EV charging be made more convenient
than filling a tank of gas?

‘I sure don’t want to sit around twiddling my thumbs
for 30 minutes at a “charge station” waiting for an
EV to charge...’

- Comment from hybridcars.com forum
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Most Li-lon pack charging times are long

Sample of US Current & Future EV Charging
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Significant technical issues with rapid charging
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How could we approach this?

Battery Swapping. . . but why EV Flow battery
swap the whole thing?
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EV Self- assembled battery

Station Pump
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What else with rapid charging?

Rapid Charge Stations Inductive/Wireless Charging
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Removes cost of at-

home charging units Charging without cables
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What would the solution look like?

* Key: Driving Miles per
Minute Charge

* Safety & Stability

*How can we avoid traditional battery issues?
*® Are there advances from other fields?

*® Are there secondary issues that make high
rates intractable?

Image: Wired.com
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Potential Project
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Future Bioreactor Concepts

Robert Conrado
ARPA-E Fellow




All biofuels face similar challenges

1)Reduce footprint
2)Increase process efficiency
3)Reduce land/water requirements




Require fundamentally different bioreactors to
convert sunlight/electricity vs. sugars into fuel

Biomass-based

biofuels Solar Fuels




How is this done today? Why is it hard?

1)Large Bioreactor
Areas

2)Long Time Scales

3)Energy Intensive




Few bioreactor designs being explored

Tube'

Photobioreactor Photobioreactor
0.5-5 m%/m3 10-50 m3/m3

To achieve commercially relevant productivities, require
>500 m?/m?3

ArPA-@ N\




Potential solutions from optics community

Photobioreactors concepts

Optical Fibers Photonic Crystal
103-10% m?/m3 10°-10% m?/m3




Potential solutions from materials community

Electrobioreactors concepts

Battery Electrode
103-10* m4/m?3
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Topping Cycles for
Power Generation

Asegun Henry
ARPA-E Fellow
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Heat Engines
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Heat Engine Stack

[Combined Cycle] [ Topping Cycle ]
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What Can Get Us There?

Thermally Regenerative Thermoelectrics
Electrochemical Systems

Discharge
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What Can Get Us There?

Thermally Regenerative Thermoelectrics
Electrochemical Systems
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What Can Get Us There?

Photovoltaics at High Thermionic energy
Temperature (565°C) conversion
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Goal: > 60% combined cycle, >10 yr lifetime




Potential Program Name:
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Ubiquitous Methane Sensing

Phil Larochelle
ORISE Postdoctoral Researcher
- Contractorto ARPA-E —
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Switching from Coal to Natural Gas Reduces
COz_Emissions

However, Methane is a powerful Greenhouse Gas

_ Global Warming Potential

Gas 25 Years 100 Years 500 Years
CO, 1 1 1
CH, 56 21 6.5

* Methane is a significantly more powerful GHG than CO,
« It falls out of the atmosphere more rapidly than CO,,

 Methane leaks from natural gas infrastructure can
reduce or reverse GHG benefit of switching from coal to
natural gas

© 2011 United Nations Framework Convention on Climate Change
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Methane Leaks Can Make GHG Emissions
from Natural Gas Worse than Coal

0.2 = Coal to gas: the influence of methane leakage |

Tom M. L. Wigley
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> 3500 Shale Gas Wells Were Drilled in the US in 2010

Drilling
Down

A ook at shale
formations In the
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Woodford Eagle Ford Barnett Haynesville F:a-.rn-ttewi1l"v!'I Marcellus

0.96 0.28 5.6 3.81 2.10 1.27

MUMBER OF WELLS COMPLETED [2010)

274 396 585 703 662 792

Dan Yergin, Wall Street Journal

Is anyone checking all of these wells for methane leaks?
This is also a wasted resource, and wasted $$.
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Report in Nature 2/12: Natural Gas Producers in Denver Area
losing ~4% of their Methane.

nagure............

A LOSING BATTLE
Estimates of methane losses from gas fields near Denver, Colorado, based on air
sampling differ considerably from calculations based on industry activity.
Inventory |y A
of industry — ? /
activity
Monitoring | ///////
tower : S
Mobile lab - :
////////////////g

0 50 100 150 200 250
Billion grams of methane per year

“the debate has been marked
by a scarcity of hard data.”

E— e

- S——
QrpPa-e AN



Techno-Economic Goal

Find the Leaks and Stop Them.

Precise Ubiquitous Geospatial Location
of Methane Concentrations in the
Atmosphere
1 Square Mile Increments
1 PPM Resolution
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There are satellite based CH4 & CO2
measurements, can we increase their resolution?

Methane SCIAMACHY (W FMDﬂ ﬂ];"EN'!.I"ISAT 2003 01

OCO-2

Orbiting Carbon Observatory

chwitzi@iup. physik.un-bramen.da

Methane column VMR [pobv]
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Carbon dioxide SGIAMAGHY{WFMDN ﬂ}fEN‘I.I"ISAT 2003 01
IUFfIFE, Univ. Breman e T " DLR
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Remote Detection through Spectroscopy
Semiconductor Quantum Cascade Lasers Developed @ Bell Labs
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Appl Phys B APPIIEd PhySiCS B

DOI 10.1007/500340-011-4800-0 .
Lasers and Optics

Can the Detection
Range be Extended?

Quantum-cascade laser photoacoustic detection
of methane emitted from natural gas powered engines

M.V. Rocha - M.S. Sthel - ML.G. Silva - L.B. Paiva -
E.W. Pinheiro - A. Miklos . H. Vargas

Received: 8 June 2011/ Revised version: 14 September 2011
© Springer-Verlag 2011




Technology that can do it
Plane/UAV to Ground
M Spectroscopy
" (Triangulation)
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Technology that can do it

Plane/UAV to Plane/UAV
Spectroscopy ,}:4

(Triangulation)
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Smaller Types of UAVs: QuadRotors, Others

Intelligent coordination + 4 4 ,f ey
¥uer o«
of many UAVs 4 Xe “ﬁ\‘b




Going Even Smaller: Super Small UAVs and The Smart Dust
Concept




Can We Crowdsource It?

e
[Ii'[]' Frederick P
- Ward Dacong Fort Lupton ___E.;E:'n
T'ﬂwr» +J Erie
1] Bodider - Lafayette ¥ ' 4
i \ELOUISEII%E]U B”ghtﬂ
erland e
\‘\ | P 4{/
Super :-rxﬂ . :Lcrnltn:rn ’_‘_/“
Westminster |35 Commerce
= \_ﬂnh Clrt:-f—____,
Arvada = [ =
= J
— xll:lahn—'—-—* Golder
Eprlngﬁ-
Eo ﬁjﬁq‘
_,J Evergreen Mar fl;L;Engle'mad b
gl i 3
I"-:".‘ Littieton Cah}ennial

Give people cheap sensors and iPhone/Android apps.

Follow the concentration gradients
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Methane Leak Detection Program Name:
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